Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Small ; : e2401197, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38676332

RESUMEN

Interface passivation is a key method for improving the efficiency of perovskite solar cells, and 2D/3D perovskite heterojunction is the mainstream passivation strategy. However, the passivation layer also produces a new interface between 2D perovskite and fullerene (C60), and the properties of this interface have received little attention before. Here, the underlying properties of the 2D perovskite/C60 interface by taking the 2D TEA2PbX4 (TEA = C6H10NS; X = I, Br, Cl) passivator as an example are systematically expounded. It is found that the 2D perovskite preferentially exhibits (002) orientation with the outermost surface featuring an oriented arrangement of TEACl, where the thiophene groups face outward. The outward thiophene groups further form a strong π-π stacking system with C60 molecule, strengthening the interaction force with C60 and facilitating the creation of a superior interface. Based on the vacuum-assisted blade coating, wide-bandgap (WBG, 1.77 eV) perovskite solar cells achieved impressive records of 19.28% (0.09 cm2) and 18.08% (1.0 cm2) inefficiency, respectively. This research not only provides a new understanding of interface processing for future perovskite solar cells but also lays a solid foundation for realizing efficient large-area devices.

3.
Heliyon ; 9(12): e22341, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38076159

RESUMEN

The significant increase in energy consumption has facilitated a rapid increase in offensive greenhouse gas (GHG) and CO2 emissions. The consequences of such emissions are one of the most pivotal concerns of environmental scientists. To protect the environment, they are conducting the necessary research to protect the environment from the greenhouse effect. Among the different sources of CO2 emission, power plants contribute the largest amount of CO2 and as the number of power plants around the world is rising gradually due to increasing energy demand, the amount of CO2 emission is also rising subsequently. Researchers have developed different potential technologies to capture post-combustion CO2 capture from powerplants among which membrane-based, cryogenic, absorption and adsorption-based CO2 processes have gained much attention due to their applicability at the industrial level. In this work, adsorption-based CO2 technologies are comprehensively reviewed and discussed to understand the recent advancements in different adsorption technologies and several adsorbent materials. Researchers and scientists have developed and advanced different adsorption technologies including vacuum swing adsorption, temperature swing adsorption, pressure swing adsorption, and electric swing adsorption, etc. To further improve the CO2 adsorption capacity with a compact CO2 adsorption unit, researchers have integrated different adsorption technologies to investigate their performance, such as temperature vacuum swing adsorption, pressure vacuum swing adsorption, electric temperature pressure swing adsorption, etc. Different adsorbent materials have been tested to evaluate their applicability for CO2 adsorption and among these adsorbents, advanced carbonaceous, non-carbonaceous, polymeric, and nanomaterials have achieved much attention due to their suitable characteristics that are required for adsorbing CO2. Researchers have reported that higher CO2 adsorption capacity can be achieved by integrating different adsorption technologies and employing suitable adsorbent material for that system. This comprehensive review also provides future directions that may assist researchers in developing novel adsorbent materials and gaining a proper understanding of the selection criteria for effective CO2 adsorption processes with suitable adsorbents.

4.
Int J Angiol ; 32(2): 88-94, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37207014

RESUMEN

Common femoral artery (CFA) atherosclerotic lesions currently remain one of the last limitations for adoption of endovascular repair as the first-line treatment, easy surgical accessibility, and, last but not least, favorable long-term outcomes, still making CFA disease treatment part of the surgical domain. In the last 5 years, improvement of the endovascular equipment and technical skills of the operators have led to an increase in percutaneous CFA procedures. A single-center randomized prospective study of 36 symptomatic (Rutherford 2-4) CFA stenotic or occlusive lesions were included, and patients were randomized over two groups based on the management approach SUPERA versus hybrid technique. Patients had a mean age 60.8 ± 8.2 years. Thirty-two (88.9%) patients reported improvement of the clinical symptoms, 28 (87.5%) patients had intact pulse postoperatively, and 28 (87.5%) had patent vessels. Follow-up showed that none developed reocclusion or restenosis during the period of follow-up. Comparison of difference in peak systolic velocity ratio (PSVR) among study groups showed that the hybrid technique had more reduction of PSVR postintervention compared to the SUPERA group with a p -value of < 0.0001. Safety and feasibility of endovascular approach with the SUPERA stent to the CFA (no stent zone) has low incidence of postoperative morbidity and mortality in well experienced surgical hands.

5.
Polymers (Basel) ; 15(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37177196

RESUMEN

The current study introduces a two-terminal (2T) thin-film tandem solar cell (TSC) comprised of a polymer-based top sub cell and a thin crystalline silicon (c-Si) bottom sub cell. The photoactive layer of the top sub cell is a blend of PDTBTBz-2F as a polymer donor and PC71BM as a fullerene acceptor. Initially, a calibration of the two sub cells is carried out against experimental studies, providing a power conversion efficiency (PCE) of 9.88% for the top sub cell and 14.26% for the bottom sub cell. Upon incorporating both sub cells in a polymer/Si TSC, the resulting cell shows a PCE of 20.45% and a short circuit current density (Jsc) of 13.40 mA/cm2. Then, we optimize the tandem performance by controlling the valence band offset (VBO) of the polymer top cell. Furthermore, we investigate the impact of varying the top absorber defect density and the thicknesses of both absorber layers in an attempt to obtain the maximum obtainable PCE. After optimizing the tandem cell and at the designed current matching condition, the Jsc and PCE of the tandem cell are improved to 16.43 mA/cm2 and 28.41%, respectively. Based on this TCAD simulation study, a tandem configuration established from an all thin-film model may be feasible for wearable electronics applications. All simulations utilize the Silvaco Atlas package where the cells are subjected to standard one Sun (AM1.5G, 1000 W/m2) spectrum illumination.

6.
Materials (Basel) ; 16(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37048931

RESUMEN

Recently, nanowire detectors have been attracting increasing interest thanks to their advantages of high resolution and gain. The potential of using nanowire detectors is investigated in this work by developing a physically based model for Indium Phosphide (InP) phototransistor as well as by performing TCAD simulations. The model is based on solving the basic semiconductor equations for bipolar transistors and considering the effects of charge distribution on the bulk and on the surface. The developed model also takes into consideration the impact of surface traps, which are induced by photogenerated carriers situated at the surface of the nanowire. Further, photogating phenomena and photodoping are also included. Moreover, displacement damage (DD) is also investigated; an issue arises when the detector is exposed to repeated doses. The presented analytical model can predict the current produced from the incident X-ray beam at various energies. The calculation of the gain of the presented nanowire carefully considers the different governing effects at several values of energies as well as biasing voltage and doping. The proposed model is built in MATLAB, and the validity check of the model results is achieved using SILVACO TCAD device simulation. Comparisons between the proposed model results and SILVACO TCAD device simulation are provided and show good agreement.

7.
Materials (Basel) ; 16(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36984391

RESUMEN

Current mismatch due to solar cell failure or partial shading of solar panels may cause a reverse biasing of solar cells inside a photovoltaic (PV) module. The reverse-biased cells consume power instead of generating it, resulting in hot spots. To protect the solar cell against the reverse current, we introduce a novel design of a self-protected thin-film crystalline silicon (c-Si) solar cell using TCAD simulation. The proposed device achieves two distinct functions where it acts as a regular solar cell at forward bias while it performs as a backward diode upon reverse biasing. The ON-state voltage (VON) of the backward equivalent diode is found to be 0.062 V, which is lower than the value for the Schottky diode usually used as a protective element in a string of solar cells. Furthermore, enhancement techniques to improve the electrical and optical characteristics of the self-protected device are investigated. The proposed solar cell is enhanced by optimizing different design parameters, such as the doping concentration and the layers' thicknesses. The enhanced cell structure shows an improvement in the short-circuit current density (JSC) and the open-circuit voltage (VOC), and thus an increased power conversion efficiency (PCE) while the VON is increased due to an increase of the JSC. Moreover, the simulation results depict that, by the introduction of an antireflection coating (ARC) layer, the external quantum efficiency (EQE) is enhanced and the PCE is boosted to 22.43%. Although the inclusion of ARC results in increasing VON, it is still lower than the value of VON for the Schottky diode encountered in current protection technology.

8.
Micromachines (Basel) ; 14(2)2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36838185

RESUMEN

This current study aims to enhance the electrostatic MEMS converter performance mainly by boosting its output power. Three different techniques are applied to accomplish such performance enhancement. Firstly, the power is boosted by scaling up the technology of the converter CMOS accompanied circuit, the power conditioning, and power controlling circuits, from 0.35 µm to 0.6 µm CMOS technology. As the converter area is in the range of mm2, there are no restrictions concerning the scaling up of the accompanied converter CMOS circuits. As a result, the maximum voltage of the system for harvesting energy, Vmax, which is the most effective system constraint that greatly affects the converter's output power, increases from 8 V to 30 V. The output power of the designed and simulated converter based on the 0.6 µm technology increases from 2.1 mW to 4.5 mW. Secondly, the converter power increases by optimizing its technological parameters, the converter thickness and the converter finger width and length. Such optimization causes the converter output power to increase from 4.5 mW to 11.2 mW. Finally, the converter structure is optimized to maximize its finger length by using its wasted shuttle mass area which does not contribute to its capacitances and output power. The proposed structure increases the converter output power from 11.2 mW to 14.29 mW. Thus, the three applied performance enhancement techniques boosted the converter output power by 12.19 mW, which is a considerable enhancement in the converter performance. All simulations are carried out using COMSOL Multiphysics 5.4.

9.
Polymers (Basel) ; 15(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36772085

RESUMEN

Organic and perovskite semiconductor materials are considered an interesting combination thanks to their similar processing technologies and band gap tunability. Here, we present the design and analysis of perovskite/organic tandem solar cells (TSCs) by using a full optoelectronic simulator (SETFOS). A wide band gap lead-free ASnI2Br perovskite top subcell is utilized in conjunction with a narrow band gap DPPEZnP-TBO:PC61BM heterojunction organic bottom subcell to form the tandem configuration. The top and bottom cells were designed according to previous experimental work keeping the same materials and physical parameters. The calibration of the two cells regarding simulation and experimental data shows very good agreement, implying the validation of the simulation process. Accordingly, the two cells are combined to develop a 2T tandem cell. Further, upon optimizing the thickness of the front and rear subcells, a current matching condition is satisfied for which the proposed perovskite/organic TSC achieves an efficiency of 13.32%, Jsc of 13.74 mA/cm2, and Voc of 1.486 V. On the other hand, when optimizing the tandem by utilizing full optoelectronic simulation, the tandem shows a higher efficiency of about 14%, although it achieves a decreased Jsc of 12.27 mA/cm2. The study shows that the efficiency can be further improved when concurrently optimizing the various tandem layers by global optimization routines. Furthermore, the impact of defects is demonstrated to highlight other possible routes to improve efficiency. The current simulation study can provide a physical understanding and potential directions for further efficiency improvement for lead-free perovskite/organic TSC.

10.
Polymers (Basel) ; 15(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36850152

RESUMEN

In this study, we present some design suggestions for all-polymer solar cells by utilizing device simulation. The polymer solar cell under investigation is formed by a photoactive film of a blend comprising PBDB-T as a polymer donor and PZT as a polymerized small molecule acceptor. The initial cell is based on a fabricated cell whose structure is ITO/PEDOT:PSS/PBDB-T:PZT/PFN-Br/Ag, which has a power conversion efficiency (PCE) of about 14.9%. A calibration procedure is then performed by comparing the simulation results with experimental data to confirm the simulation models, and the material parameters, implemented in the SCAPS (Solar Cell Capacitance Simulator) simulator. To boost the open circuit voltage, we investigate a group of hole transport layer (HTL) materials. An HTL of CuI or P3HT, that may replace the PEDOT:PSS, results in a PCE of higher than 20%. However, this enhanced efficiency results in a minor S-shape curve in the current density-voltage (J-V) characteristic. So, to suppress the possibility of the appearance of an S-curve, we propose a double HTL structure, for which the simulation shows a higher PCE with a suppressed kink phenomenon due to the proper band alignment. Moreover, the designed cell is investigated when subjected to a low light intensity, and the cell shows a good performance, signifying the cell's suitability for indoor applications. The results of this simulation study can add to the potential development of highly efficient all-polymer solar cells.

11.
Sci Rep ; 13(1): 1771, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36720977

RESUMEN

Vedolizumab is a humanized monoclonal antibody used to treat moderate-to-severe inflammatory bowel disease (IBD). The aim of the study was to assess the effectiveness of the induction of vedolizumab trough level in predicting short-term (week 14) clinical outcomes, and covariates that affect the response in Saudi Arabian patients. This prospective, real-life study included a total of 16 patients (4 Crohn's disease (CD) and 12 ulcerative colitis (UC)) with a confirmed diagnosis of IBD and generally naïve to receiving vedolizumab therapy. Using ELISA assay, vedolizumab induction trough and peak levels were measured at weeks 0, 2, and 6. The follow-up assessment was at week 14, where clinical outcomes were measured using the partial Mayo score for UC, and the CD activity score (CDAI), and Harvey Bradshaw index (HBI) for CD. At week 14, 9 patients (52.9%) out of 16 patients demonstrated response to therapy; clinical remission was reported in 5 patients (29.4%), and in 4 cases a clinical response was noted (23.5%). Clinical remission at week 14 was linked significantly with week 6 median vedolizumab levels in responders (25.1 µg/ml 95% CI: 16.5-42.9) compared to non-responders (7.7 µg/ml, 95% CI: 4.6-10.6) (P = 0.002). Receiver operator curve analysis at week 6 identified a cut-off > 8.00 µg/mL for short-term clinical remission. Also, at week 14, BMI significantly correlated with week 6 vedolizumab trough levels (P = 0.02). No other covariates correlated with drug levels at any time point examined. Week 6 early vedolizumab trough level measurements in IBD patients predicted short-term week 14 clinical remission.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Humanos , Arabia Saudita , Monitoreo de Drogas , Estudios Prospectivos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedad de Crohn/diagnóstico , Enfermedad de Crohn/tratamiento farmacológico , Colitis Ulcerosa/diagnóstico , Colitis Ulcerosa/tratamiento farmacológico
12.
Sensors (Basel) ; 22(20)2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-36298220

RESUMEN

Point clouds are one of the most widely used data formats produced by depth sensors. There is a lot of research into feature extraction from unordered and irregular point cloud data. Deep learning in computer vision achieves great performance for data classification and segmentation of 3D data points as point clouds. Various research has been conducted on point clouds and remote sensing tasks using deep learning (DL) methods. However, there is a research gap in providing a road map of existing work, including limitations and challenges. This paper focuses on introducing the state-of-the-art DL models, categorized by the structure of the data they consume. The models' performance is collected, and results are provided for benchmarking on the most used datasets. Additionally, we summarize the current benchmark 3D datasets publicly available for DL training and testing. In our comparative study, we can conclude that convolutional neural networks (CNNs) achieve the best performance in various remote-sensing applications while being light-weighted models, namely Dynamic Graph CNN (DGCNN) and ConvPoint.

13.
Bioorg Chem ; 129: 106143, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36191430

RESUMEN

Three series of novel 1-aryl-3-(4-methylsulfonylphenyl) pyrazole derivatives were synthesized, characterized by several spectroscopic techniques, and investigated as potential anti-inflammatory and anticancer agents. The biological evaluation showed that almost all the synthesized compounds have significant potency and selectivity for the COX-2 enzyme over COX-1 with noticeable anti-inflammatory activity compared to celecoxib and indomethacin. Accordingly, compounds 8a, 8b, 8e, 8j, 8l, 9a, 9b, 9c, and 10b showed the best COX-2 inhibition (IC50 ranged from 0.059 to 0.079 µM) with good anti-inflammatory activity (% of edema inhibition ranged from 87.9 to 67.5). Moreover, compound 8b possessed the highest selectivity index regarding COX-2 isozyme (SI = 211) in comparison to celecoxib (SI = 312) with good in vivo anti-inflammatory activity (% edema inhibition = 77.70 after 5 h). Also, compounds 8a, 8b, 8j, 8l, and 9a showed ulcerogenic liability and histopathological changes close to celecoxib. Molecular docking and dynamics simulations were also conducted to illustrate the binding modes inside the COX-2 active site. Furthermore, all compounds were screened against three cancer cell line panels to determine their antiproliferative properties by MTT assay. Compounds 8a, 8b, and 8e along with their cyclized forms 9a, 9b, and 9c exhibited a considerable antiproliferative effect on liver (IC50: 6.81-19.71 µM), colon (IC50: 7.64-15.34 µM), and breast (IC50: 6.77-18.41 µM) cancer cell lines. More importantly, compounds 8a, 8e, 9a, and 9b were found to be safe on normal HEK-293T kidney cells in comparison to cancer. cells, especially compound 8e with IC50 value of 66.45 µM. Mechanistic studies demonstrated the apoptotic activity of the most active compounds 8a, 8e, 9a, and 9b on MCF-7 cancer cells by inducing a strong S phase cell cycle arrest suggesting that the mechanism of its antiproliferative activity may be through COX-2 inhibition. Finally, the hit compounds 8a, 8b and 9a were discovered to have selective COX-2 inhibitory activity and good anti-inflammatory activity with minimal ulcerogenic effect as well as potent anticancer activity.


Asunto(s)
Antineoplásicos , Inhibidores de la Ciclooxigenasa 2 , Humanos , Ciclooxigenasa 2/metabolismo , Simulación del Acoplamiento Molecular , Celecoxib/uso terapéutico , Antiinflamatorios/química , Edema/inducido químicamente , Edema/tratamiento farmacológico , Estructura Molecular , Relación Estructura-Actividad
15.
Micromachines (Basel) ; 13(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35744482

RESUMEN

In this current study, the validation and evaluation of a behavioral circuit model of electrostatic MEMS converters are presented. The main objective of such a model is to accurately find the converter behavior through the proper choice of its circuit elements. In this regard, the model enables the implementation of the electrostatic MEMS converter using commercially available off-shelf circuit elements. Thus, the overall vibration energy harvesting system can be implemented and tested without the need for fabricating the converter. As a result, the converter performance can be verified and evaluated before its fabrication which saves the expenses of fabricating trailed prototypes. To test the model, we apply it to an enhanced converter in which the conventional electrostatic MEMS converter is modified by depositing the tantalum pentoxide, Ta2O5, a high dielectric constant material, on its fingers' sidewalls. Such a deposition technique causes an appreciable increase in the overall converter capacitance and, in turn, the output power, which is boosted from the range of µw to the range of mW. Next, the converter behavioral circuit model, which is based on representing its capacitances variations with respect to the input displacement, x caused by the vibration signal, C-x curve, is built up. The model is qualitatively validated and quantitatively evaluated. The enhanced converter performance is investigated through the interaction of its model with the power conditioning circuit. From the simulation results, it is revealed that the converter behavioral circuit model accurately accomplishes the vibration energy conversion operation. As a result, the specification of the required controlling pulses for the converter operation is accurately determined. Finally, the model accuracy is validated by calibrating its performance with a traditionally simulated and fabricated electrostatic MEMS converter.

16.
Micromachines (Basel) ; 12(8)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34442595

RESUMEN

One of the most important challenges in the design of the piezoelectric energy harvester is its narrow bandwidth. Most of the input vibration sources are exposed to frequency variation during their operation. The piezoelectric energy harvester's narrow bandwidth makes it difficult for the harvester to track the variations of the input vibration source frequency. Thus, the harvester's output power and overall performance is expected to decline from the designed value. This current study aims to solve the problem of the piezoelectric energy harvester's narrow bandwidth. The main objective is to achieve bandwidth broadening which is carried out by segmenting the piezoelectric material of the energy harvester into n segments; where n could be more than one. Three arrays with two, four, and six beams are shaped with two piezoelectric segments. The effect of changing the length of the piezoelectric material segment on the resonant frequency, output power, and bandwidth, as well as the frequency response is investigated. The proposed piezoelectric energy harvesters were implemented utilizing a finite element method (FEM) simulation in a MATLAB environment. The results show that increasing the number of array beams increases the output power and bandwidth. For the three-beam arrays, at n equals 2, 6 mW output power and a 9 Hz bandwidth were obtained. Moreover, the bandwidth of such arrays covered around 5% deviation from its resonant frequency. All structures were designed to operate as a steel wheel safety sensor which could be used in train tracks.

17.
Heliyon ; 7(5): e07019, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34036195

RESUMEN

Detecting and analyzing a moving body position are helpful in many fields, such as medicine, sports performance, virtual reality and many more. Therefore, researchers try to develop a tool or a system that helps to detect the motion and tracking its position. This paper shows how a Si solar cell can be modified to function as a Position Sensitive Detector (PSD), which could be used as a large area detector in a position detection system. To develop the new detector, we modeled and simulated the modified solar cell by TCAD simulation tools to calculate the detected photocurrent as a function of the position of an incident laser beam sourced by the moving object. Further, an optical position detection system is implemented containing the modified solar cell, a signal amplifier and a microcontroller. The output is then displayed on a Laptop. By measuring the same simulated output photocurrents, it is found that the measured system output matches the simulation results. This proposed position detection system is relatively cheap because it does not contain high precision optical image building components such as lenses and mirrors. Besides, the proposed system could substitute the optical system by using a large area PSD made from a broad array of solar cells. The electronics are also much more straightforward than those in systems based on image processing. So, it has a high-speed response. The error assessment of the proposed system showed a low position detection error of less than 10%.

18.
Artículo en Inglés, Español | MEDLINE | ID: mdl-33663921

RESUMEN

OBJECTIVE: To evaluate the efficacy and safety of MicroPulse® transscleral laser therapy (TLT) in the management of glaucoma patients. METHODS: A prospective, interventional, non-comparative case series was conducted in the department of ophthalmology, Ain Shams University Hospital on 61 eyes of 46 patients with various glaucoma types and of severity, ranging from mild to severe. In addition to best-corrected visual acuity (BCVA), intraocular pressure (IOP) and the number of glaucoma medications were recorded before and after treatment, along with the postoperative need for systemic carbonic anhydrase inhibitors (CAI), success rates, number of treatment sessions and postoperative complications. Success was defined as an IOP of 6-18mmHg or at least a 30% decrease from preoperative IOP in the absence of any vision-threatening complications during the 6-month follow-up period. RESULTS: MicroPulse TLT was performed on 61 glaucomatous eyes. Eleven of the 61 eyes (18%) that did not achieve IOP between 6-18mmHg, or at least a 30% decrease from baseline at 6 months, had a repeat MicroPulse TLT session. At 6 months follow-up post a single MicroPulse TLT session, the mean IOP reduction was 35.9±14.2%; and 6 months after the second session, it was 36.2±17.5% (P<.001). The success rate after the first session was 73.8% which increased to 78.7% after the second session. The mean anterior chamber (AC) cell reaction was+1.9±.8 at 1 day,+1.0±.7 at 1 week, and+.2±.4 at 1 month postoperatively. No cells were detected in any of the cases at 3 and 6 months follow-up (P<.001). The average number of anti-glaucoma eye drops before MicroPulse TLT was 2.6±1.0. Postintervention, the average number of anti-glaucoma eye drops was 1.7±1.2, and sustained at 6 months follow-up after the last treatment session (P<.001). There were no significant complications were noted. One eye developed transient hypotony for 3 months after MicroPulse TLT. CONCLUSIONS: MicroPulse TLT is safe and effective in lowering IOP in a variety of glaucoma types and severity.

19.
J Cardiovasc Transl Res ; 13(6): 988-995, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32458401

RESUMEN

MicroRNA-208a is a cardiac specific oligo-nucleotide. We aimed at investigating the ability of microRNA-208a to diagnose myocardial infarction and predict the outcome of primary percutaneuos coronary angiography (PCI). Patients (n = 75) presented by chest pain were recruited into two groups. Group 1 (n = 40) had ST elevation myocardial infarction (STEMI) and underwent primary PCI: 21 patients had sufficient reperfusion and 19 had no-reflow. Group 2 (n = 35) had negative cardiac troponins (cTns). Plasma microRNA-208a expression was assessed using quantitative polymerase chain reaction and patients were followed for occurrence of in-hospital major adverse cardiac events (MACE). MicroRNA-208a could diagnose of MI (AUC of 0.926). After primary PCI, it was superior to cTnT in prediction of no-reflow (AUC difference of 0.231, P = 0.0233) and MACE (AUC difference of 0.367, P = 0.0053). Accordingly, circulating levels of miR-208a can be used as a diagnostic marker of MI and a predictor of no-reflow and in-hospital MACE. Graphical abstract Receiver operating curve analysis of no-reflow prediction of miRNA208a, CK-MB and hs-Troponin T. MicroRNA-208a shows significantly higher prediction of no-reflow as compared to routine cardiac biomarkers.


Asunto(s)
MicroARNs/sangre , Fenómeno de no Reflujo/etiología , Intervención Coronaria Percutánea/efectos adversos , Infarto del Miocardio con Elevación del ST/terapia , Anciano , Biomarcadores/sangre , Angiografía Coronaria , Femenino , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Fenómeno de no Reflujo/diagnóstico por imagen , Valor Predictivo de las Pruebas , Reacción en Cadena en Tiempo Real de la Polimerasa , Infarto del Miocardio con Elevación del ST/sangre , Infarto del Miocardio con Elevación del ST/diagnóstico por imagen , Infarto del Miocardio con Elevación del ST/genética , Resultado del Tratamiento , Troponina T/sangre
20.
BMC Chem ; 14(1): 23, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32259135

RESUMEN

Three series of 2-(4-methylsulfonylphenyl) indole derivatives have been designed and synthesized. The synthesized compounds were assessed for their antimicrobial, COX inhibitory and anti-inflammatory activities. Compound 7g was identified to be the most potent antibacterial candidate against strains of MRSA, E. coli, K. pneumoniae, P. aeruginosa, and A. baumannii, respectively, with safe therapeutic dose. Compounds 7a-k, 8a-c, and 9a-c showed good anti-inflammatory activity with excessive selectivity towards COX-2 in comparison with reference drugs indomethacin and celecoxib. Compounds 9a-c were found to release moderate amounts of NO to decrease the side effects associated with selective COX-2 inhibitors. A molecular modeling study for compounds 7b, 7h, and 7i into COX-2 active site was correlated with the results of in vitro COX-2 inhibition assays.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...